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Abstract—Does the choice of programming language affect
energy consumption? Previous highly visible studies have estab-
lished associations between certain programming languages and
energy consumption. A causal misinterpretation of this work has
led academics and industry leaders to use or support certain
languages based on their claimed impact on energy consumption.
This paper tackles this causal question directly: it develops a
detailed causal model capturing the complex relationship between
programming language choice and energy consumption. This
model identifies and incorporates several critical but previously
overlooked factors that affect energy usage. These factors, such as
distinguishing programming languages from their implementa-
tions, the impact of the application implementations themselves,
the number of active cores, and memory activity, can significantly
skew energy consumption measurements if not accounted for.
We show—via empirical experiments, improved methodology,
and careful examination of anomalies—that when these factors
are controlled for, notable discrepancies in prior work vanish.
Our analysis suggests that the choice of programming language
implementation has no significant impact on energy consumption
beyond execution time.

I. INTRODUCTION

The acceleration of climate change due to use of fossil
fuels has driven an increased focus on efforts to decrease
both the energy consumption and carbon footprint of computer
systems [1H3]. In 2018, an estimated 1% of total global
energy consumption was attributed to datacenters alone [4].
Modern machine learning workloads—especially training—
can generate hundreds of tons of CO, emissions [5} 6]]. For
example, Meta reports that training the Llama2 large language
model generated an estimated 539 tons of CO, emissions [7].

Programmers care about energy when building applications,
but often lack tools to effectively address this concern [S§]].
According to an influential line of work, one potential way
to reduce energy consumption is to choose a different pro-
gramming language. This work analyzes a wide selection of
programming languages and workloads, and concludes that
different programming languages consume widely varying
amounts of energy [9H11]]. The centerpiece of these papers
is a ranking of programming languages by energy efficiency
(reproduced in part in Table [I)).

*Work done at the University of Massachusetts Amherst.

These studies have received wide attention, both in aca-
demic and industrial circles. They have been collectively cited
over 800 times per Google Scholar (as of October 2025). The
results—especially the ranking of programming languages—
have had an unusually visible impact in industry, and are
routinely quoted on social networks and in blog posts. As
Figure |2|illustrates, the rankings have been cited by executives
and engineers from Amazon [12H15[, Intel [16], SAP [17],
and other companies [18] to argue for business decisions and
to advocate for a shift in programming languages with an
eye towards sustainability. Often, these rankings have been
harnessed to support the adoption of Rust, which ranks as one
of the most energy-efficient languages while providing safety
guarantees that languages like C and C++ lack.

Despite the fact that these studies are statistical and only
establish associations, they have nonetheless been broadly
interpreted as establishing a causal relationship, that the choice
of programming language has a direct effect on a system’s
energy consumption. This misinterpretation stems in part from
the work’s presentation, not only in ranking of languages by
efficiency, but also from the specific claim that “it is almost
always possible to choose the best language” when considering
execution time and energy consumption [11, §3.3].

The above analysis and approach suffer from numerous
other methodological flaws (§II-B] §VI-C). However,
the primary focus of this paper is carefully addressing the
question: does the choice of programming language affect
energy consumption? We embrace this question by developing
a rich causal model of the relationship between programming
language and energy consumption. Figure [I| presents a causal
diagram representing our final model. Causal diagrams illus-
trate how different factors influence each other, with arrows
showing the direction of these influences [[19]. We build
this model incrementally, incorporating the various factors at
play and their relationships, and provide quantitative and/or
qualitative evidence supporting each step.

Our model specifically identifies the number of active
cores and memory activity as the key contributors to power
draw and consequently energy consumption. It highlights the
importance of both programming language and application
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Fig. 1: The causal model (represented as a causal diagram) of the relationship between programming language and
energy consumption presented in this paper (§IV). Gray arrows represent comparatively weaker relationships, as Section
details: programming language implementation has only a minor effect on parallelism, and memory activity plays a minimal,
less controllable role in energy consumption compared to CPU activity.
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(a) Keynote talk at AWS re:Invent 2023: “There is no reason why
you should not be programming in Rust, if you are considering cost
and sustainability to be high priorities”.
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(b) Keynote talk at KubeCon + CloudNativeCon Europe 2022:
“Coding with Python over Rust for large scale applications can mean
a difference of up to 75x in energy usage”.

Fig. 2: Industry keynotes advocating for Rust over other
languages due to reduced energy consumption, based on
the results of Pereira et al. [9{11]] (.

implementations: language implementation decisions can add
execution time overheads including garbage collection or just-
in-time warmup, while application implementations dictate the
level of parallelism and overall performance of the program.
These varying implementation characteristics are the primary
drivers of the anomalies we identify in prior work.

Our experimental approach incorporates several method-
ological improvements, correcting technical errors in prior
work that led to negative or otherwise incorrect energy read-
ings. We present an improved methodology based on hardware
performance counter data that accurately quantifies average
core usage and memory activity. When controlling for con-
founds like varying CPU utilization, we conclude that energy
consumed is directly proportional to execution time, and
independent of the choice of programming language. These
results simplify the task of programmers who are seeking to
achieve higher energy efficiency by focusing their efforts on
minimizing execution time.

II. PRIOR WORK
A. Overview

The line of work that is the point of departure for this paper
explores the relationship between the choice of programming
language and energy efficiency [9H11]. These papers rank pro-
gramming languages based on energy consumption, execution
time, and memory usage, and attempt to find associations
between these metrics. In the remainder of this paper, we refer
to these papers collectively as “Pereira et al.”.

In essence, these studies compare the execution time, energy
consumption and memory usage of benchmark implementa-
tions in 27 various programming languages. Table [I| presents



TABLE I: Partial results from Pereira et al. (, show-
ing average execution time and energy consumption for the
languages discussed in this paper, normalized to C. Boldface
denotes anomalous results that Sections address.

Language Execution Time | Energy Consumption
C 1.00 1.00
Rust 1.04 1.03
C++ 1.56 1.34
Java 1.89 1.98
Go 2.83 3.23
C# 3.14 3.14
JavaScript 6.52 4.45
PHP 27.64 29.30
TypeScript 46.20 21.50
Python 71.90 75.88
Lua 82.91 45.98

some of the main results from Pereira et al., limited to the
languages discussed in this paper, with anomalous results
highlighted in boldface (Section discusses this selection
in detail). Their experiments leverage Intel’s Running Average
Power Limit (RAPL) interface to measure energy consump-
tion, and GNU time or Python’s memory_profiler to
measure peak or “total” memory usage, respectively.

The programs used for comparison are from the Computer
Language Benchmark Game [20] (CLBG), a corpus of small
benchmark implementations in various languages (22 to 287
lines of code). The most recent paper in the series [[11f] also
incorporates 9 benchmarks from Rosetta Code, a repository
of even smaller and simpler code snippets such as Fibonacci,
Ackermann, or Sieve of Eratosthenes (typically under 50
lines of code). Because Rosetta Code benchmarks are strictly
smaller in scope and size than the CLBG benchmarks, we
exclude them from consideration in this paper.

These studies first identify a strong relationship between
energy and time. By definition, energy is a linear function
of time (energy = power X time), hence a strong correla-
tion is to be expected. They next investigate whether a fast
language is always more energy efficient, and claim that
this is not the case. They report no significant correlation
between peak memory usage and energy consumption, but
a strong correlation when considering total memory usage.
Finally, they conclude by presenting a ranking of programming
languages by energy efficiency, execution time, and memory
usage, which programmers can use to select a language for
their project.

B. Critique

As summarized here and discussed in the following sections,
Pereira et al.’s studies suffer from several flaws, which this
paper addresses and corrects.

Programming Language versus Implementation: Pro-
gramming languages define the syntax and semantics, but
it is their implementations that primarily influence perfor-
mance. While some languages have only a single, widely-
used implementation such as Rust or Go, others have multiple
implementations, each with their own performance charac-
teristics. For instance, Pereira et al. treat Ruby and JRuby

as different languages, while they are in fact two separate
implementations of the same Ruby language. The papers use
different benchmark implementations to compare these two
Ruby implementations, confounding their comparison.

Widely Varying Benchmark Implementations: While
benchmark implementations are claimed to employ the “exact
same algorithm” across languages [11, §1], this is in fact
not the case. Benchmark implementations notably have highly
varied levels of parallelism and CPU usage, varying degrees
of use of third-party libraries, and non-uniform use of vector
instructions. These important differences are not properties of
the languages themselves, and their effect on performance and
energy consumption must be accounted for.

Apparent Anomalies in Results: Some results reported by
Pereira et al. are counter-intuitive, and are presented without
investigation or explanation. C++ is reported as being 34%
less energy efficient and 56% slower than C. Since C++
is approximately a superset of C, and both share the same
compiler, optimizations, and code generation backend, we
would expect identical energy consumption and execution
time. Similarly, TypeScript is reported as being 4.8x less
energy efficient and 7.1x slower than JavaScript. TypeScript
is a strict superset of JavaScript: any valid JavaScript program
is a valid TypeScript program. The same Node.js runtime
system is used for both languages. The compilation process
for TypeScript may insert or modify code to support older
JavaScript standards, but we do not expect this to result
in any significant performance overhead. Java, C#, and Go
are reported as 1.89x, 3.14x, and 2.83x slower than C,
respectively. These numbers are unexpectedly high as these
implementations are known to be highly optimized [21]. We
expect low overhead from garbage collection costs, plus initial
just-in-time compilation overhead for Java and C#. Lua and
TypeScript both stand out as exhibiting significantly lower
normalized energy consumption than normalized execution
time; this is explained by the fact that nearly all of the Lua and
TypeScript benchmark implementations are sequential, while
the implementations of these benchmarks in other languages
are parallelized. Section characterizes the impact of the
number of active cores on energy consumption.

Inappropriate Memory Metrics: Peak memory usage and
“total” memory usage are used to estimate memory activity.
The tools used to gather both metrics are both based on
resident set size (RSS), which is a poor proxy for memory
usage and activity [22]. RSS includes memory that may not
be actively used by the program, and crucially does not take
cache activity into account. A well-optimized program can
have a large RSS but excellent cache locality: if the cache can
fulfill most memory requests, memory activity will be low.
Benchmark implementation specifics heavily influence peak
memory usage, which depends primarily on the choice of
data structures used throughout the program. These differences
should not be attributed to the languages themselves.

The total memory usage is measured by using Python’s
memory_profiler, which samples the RSS at a frequency
of ten times per second. This metric is directly proportional to



execution time, which is itself directly proportional to energy
consumption.

Failure to Control for Language Implementation Char-
acteristics: Most language implementations have an initial
cost to import and set up necessary in-memory data structures.
Language implementations using a just-in-time compiler also
require an initial warmup period [23, 24]]. These start-up
costs are amplified by the benchmarks’ short execution times,
which in some cases run for less than a fraction of a second.
For example, measuring only the first iteration of a short-
lived Java benchmark may not be indicative of Java’s overall
performance. Section shows that this first iteration can
be up to 3x slower than subsequent ones. Garbage collection
also can have a significant impact on both execution time and
memory usage [25], and can be fine-tuned to obtain better
performance.

III. RESEARCH QUESTIONS

This paper provides numerous improvements to methodol-
ogy and results over prior work. Section first introduces
and gradually builds a causal model capturing all factors
standing between choice of programming language and energy
consumption. Section [V] describes the improved methodology
used in this paper, including correction of technical errors and
enhanced data gathering with performance counters. Finally,
using both the causal model and improved methodology,
Section addresses the following research questions:

« RQ1: Do some language implementations consume more

energy than others?

e« RQ2: What are the key contributors to power draw
standing between choice of programming language and
energy consumption?

o RQ3: Can observed anomalies in prior work be explained
through the lens of our causal model?

IV. CAUSAL MODEL FOR ENERGY CONSUMPTION IN
PROGRAMMING LANGUAGES

This section builds piece by piece the causal model pre-
sented as a diagram in its final form in Figure |1} Causal dia-
grams illustrate how different factors influence each other, with
directed edges indicating cause-to-effect relationships [[19].
Formally, edges indicate that changes in the origin node impact
the probability distribution of its descendants. Our diagrams
additionally use gray arrows to represent comparatively weaker
relationships, as detailed in the following sections. Each sub-
section below gradually adds nodes and edges to the diagram
in order to obtain a rich causal model that captures the essential
factors in the relationship between the choice of programming
language and energy consumption. Figures 3] 4} [5] and [6] build
upon each other, with new elements in orange. They culminate
in the final model represented in Figure

A. Starting Point

Our starting point, shown in Figure [3] is that the choice of
programming language has a direct effect on energy consump-
tion. The following sections will explore additional elements

Programming
Language

Fig. 3: The simple model used as a starting point in
this paper (§IV-A). This simple model captures the rela-
tionship implied in Pereira et al., namely that the choice of
programming language has a direct impact on total energy
consumption.
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Fig. 4: Programming languages may have multiple imple-
mentations (§IV-B), and implementation decisions such as
garbage collection or using just-in-time compilation have a
more direct impact on performance. We are in fact comparing
implementations of programming languages, not the languages
themselves.

that come into play in this relationship, and build up a complex
model exploring the impact of different factors on energy
consumption.

B. Programming Languages and Implementations

Figure [4] introduces the important distinction between the
programming languages themselves and their implementa-
tions. Some languages have a single well-known implementa-
tion, or a blurry line between language and implementation,
such as Rust or Go. Others have multiple implementations,
such as C/C++ with GCC, Clang, or MSVC, Java with various
JVMs, Python with CPython and PyPy, or Lua with LuaJIT.
Finally, there can be significant differences between specific
versions of the same implementation. Our model treats those
different versions as different implementations altogether. For
example, recent CPython releases each successively delivered
significant performance improvements, notably with the 3.11
release achieving a 25% speedup over 3.10 [26].

Of course, programming languages have an effect on imple-
mentation possibilities. They may dictate the general memory
layout of objects, the need for a garbage collector, or the
possibility of ahead-of-time compilation. For example, Java
has no alternative for memory reclamation other than a garbage
collector. Other dynamic features such as dynamic typing,
reflection, or eval further limit the range of options available
to implementers.

The impact of the characteristics of programming languages
on their implementations is transitively included in our model:
the language has a causal influence on the implementation,
which in turn has a direct causal impact on execution time.
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Fig. 5: Energy consumption is the product of power and
time (§IV-C). Splitting into these two components allows
separate consideration of each factor.

The performance and energy consumption impact of those
language features is mediated by the implementation. Dynamic
dispatch, for example, may be implemented or optimized with
v-tables, fat pointers, monomorphic and polymorphic inline
caches, or profile-guided optimization.

C. Decomposing Energy into Power and Time

Fundamentally, energy consumption is the product of power
and time. Figure [5]decomposes these two factors. Section [VI-B|
demonstrates that power draw is constant across all languages,
implementations, and benchmarks. Claims of the contrary in
prior work were in large part due to missing multicore account-
ing, directly comparing sequential and concurrent benchmarks.

In theory, runtime systems running in parallel to the user
program may affect energy consumption beyond variance in
execution time, since increased core usage will increase power
draw, as Section details below. This hidden increased
parallelism could occur with a parallel garbage collector or
just-in-time compilation threads executing alongside the main
program. In practice, compilation threads are primarily active
only during startup, and both are rarely significant compared
to the main program’s execution and other general overhead
costs. For this reason, we draw this edge in gray in our model.

D. Contributors to Power Draw

Previous research has demonstrated that processor and
memory energy usage are the main variable contributors to
power draw [27|]. We add these two factors to our model
in Figure [6] For the studied programs on our experimental
platform, the ratio of memory energy consumption to CPU en-
ergy consumption remains between 2 and 8% (Section [VI-B).
Further, memory activity is not something that is easily
controlled by the programmer. While certain algorithms or
data structures maximize cache locality, there is eventually
a limit stemming from the LLC’s fixed, relatively small
size. Programming languages or their implementations may
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Fig. 6: Number of active cores is the primary factor
in increased power draw (§IV-D). Memory activity also
increases power draw, but to a much lesser extent. Figure
quantifies this.

impose additional overhead with a garbage collector, memory
allocation overhead, or object memory layout. Because of
the difficulty of controlling memory activity, as well as its
comparatively smaller impact compared to CPU activity on
power draw, we draw this edge in gray in our model.

E. Application Implementations

We add a final node to our diagram: the application imple-
mentations themselves, which have the most direct impact on
energy consumption. Figure [I| presents the final causal model
developed in this paper. Application implementation decisions
dictate the level of parallelism, the algorithms used, and the
data structures employed.

F. Other Factors

There are many other factors that may affect energy con-
sumption. CPU voltage and frequency scaling has a direct
impact on power consumption, and there is active research fo-
cusing on reducing or increasing frequency based on memory
activity or other factors to draw less power for a comparatively
smaller performance penalty [28]]. Specific processor model
and architecture also have an impact on power draw, with
newer processors generally being more energy-efficient. These
factors are unrelated to choice of programming languages and
are controlled for in our experiments.

V. ENHANCED METHODOLOGY

Our methodology improves upon prior work in several
ways. First, it corrects technical errors in the measurement
tool used by Pereira et al. [29]. It also enhances data gathering
by collecting performance counter readings, which we use to
identify key contributors to energy consumption. Finally, it
expands the set of benchmarks used to include two additional
widely-used benchmark suites.



A. Measurement Tool

We develop a new measurement tool for this study, correct-
ing errors found in Pereira et al.’s implementation [29], and
adding performance counter readings capturing the number of
cores used and memory activity. The tool reads performance
counters at the beginning and end of each benchmark run, and
samples energy consumption readings once per second. Peri-
odic sampling is necessary to ensure correct energy readings,
as the next section explains.

RAPL: Starting with the Sandy Bridge microarchitecture
(2011), most Intel processors provide a power management
interface called Running Average Power Limit (RAPL). RAPL
allows measurement of the energy consumption of various
parts of the system [[30]]. The interface is exposed via Model
Specific Registers (MSRs), of which the following measure
energy consumption:

¢ MSR_RAPIL_POWER_UNIT contains information used to
convert the raw energy status counter value to joules.

e MSR_PKG_ENERGY_STATUS contains the raw energy
status counter for the entire processor package (denoted
PKG in our graphs).

¢ MSR_DRAM_ENERGY_STATUS contains the raw energy
status counter for the random access memory attached to
that processor.

MSRs track energy consumption at the granularity of an
entire package. There is no way to assign energy consumption
to a specific thread or process, but only to the system as a
whole. In particular, there is no way to eliminate overhead
from the measurement tool and other background processes
from the measurement. The measurement tool must therefore
be as lightweight as possible. We disable all non-essential
processes, keeping only those necessary for the machine to
operate, and assume these processes remain constant across
all experiments.

Further, RAPL samples include all cores, even if the pro-
gram under test only uses a single core. If a benchmark is
single-threaded or generally uses fewer cores than available,
idle cores will be included in the energy consumption measure-
ment. Therefore, using a varying level of parallelism across
benchmark implementations can result in unfair comparison,
as idle cores will add some constant energy consumption to
each sample.

An inspection of Pereira et al.’s data files [29] reveals the
presence of multiple negative energy readings. Of course,
negative energy consumption is not physically possible. We
expect that these values were removed by the outlier removal
process described in their work and did not affect final results.
To ensure correct energy readings, we rectify the following
errors in the tool used by previous work:

« Erroneous inclusion of upper bits of status counters:
The previous tool incorrectly includes the upper 32 bits
of the energy status counters in their accounting. These
upper bits are reserved and must be discarded; our tool
tracks only the bottom 32 bits, which contain the actual
count of consumed energy.

« Failure to prevent overflow of status counters: The pre-
vious tool reads only a start and end value of the energy
status counter, but that counter overflows after “around
60 seconds when power consumption is high” [31]. To
avoid overflow for long-running computations, our tool
uses a separate thread that periodically (at 1Hz) reads
the contents of this register.

o Erroneous floating point arithmetic: Finally, the pre-
vious tool incorrectly subtracts counter readings after
scaling and conversion to floating point. This conversion
will result in negative or otherwise incorrect results
when overflow occurs. Our tool avoids this problem by
converting results to floating point only after subtracting
consecutive readings.

Performance Counters: Hardware performance counters
are a feature of modern processors that track various events,
such as total cycles, cache misses, branch misses, and so on.
They are often used to analyze program performance, notably
when profiling. These counters are 64 bits in length and thus
not susceptible to overflow, so it suffices to read them once at
the beginning and once at the end of each experiment.

Memory Activity: Section highlights the impact of
memory activity on energy consumption: a majority of mem-
ory energy consumption is dependent on the rate of read and
write operations. We monitor the last level cache (LLC) using
performance counters to estimate memory activity. Each LLC
hit means that the cache already had a copy of the data, and
therefore no further memory activity occurs. On the other
hand, each LLC miss means that the system must fetch data
from memory. Therefore, the number of LLC misses is a good
proxy for memory activity.

Average CPU Usage: There are multiple ways to measure
average core usage while a program is running. For simplicity,
we leverage performance counters provided by the operating
system. The Linux kernel exposes the task—-clock software
event counter, which aggregates in nanoseconds the time spent
on all processor cores. To obtain average core usage, we divide
this counter’s value by the total execution time of the program.

B. Benchmarks

This paper extends the evaluation performed by the original
Pereira et al. study by incorporating two additional large-scale
benchmark suites. We first include all possible benchmark
implementations from the Computer Language Benchmark
Game used by Pereira et al. that successfully compile and run
(118 benchmarks). Using the same set of benchmarks allows
reproduction and re-examination of results in Section [VI-C| In
addition, the analysis in Sections and includes two
more widely-used benchmark suites: SPEC CPU 2017 [32]]
(18 benchmarks) and DaCapo Chopin [33]] (22 benchmarks).
The following subsections provide a brief overview of each of
these benchmark suites.

Computer Language Benchmark Game: The Computer
Language Benchmark Game [20] (CLBG) is a collection of
small programs implemented in many different programming
languages (22 to 287 lines of code). We use the same



TABLE II: Computer Language Benchmark Game bench-
marks (§V-B), along with the range of lines of code (LoC)
across languages for each benchmark as reported by cloc.

Benchmark LoC Description

binary-trees 36-98 Memory allocator stresstest
fannkuch-redux 40-158 | Permutation algorithm
fasta 84-287 | Random DNA generation
k-nucleotide 57-202 | Frequency counting
mandelbrot 32-140 | Fractal rendering

n-body 78-157 | Physics simulation
pidigits 41-149 | Arbitrary precision
regex-redux 22-111 | String processing
reverse-complement | 34-257 | String transformation
spectral-norm 33-156 | Linear algebra

benchmark implementations as Pereira et al. [29], which is
in effect a snapshot of the fastest versions of the benchmarks
as available on the CLBG repository at the time of the original
work. Table [[| provides a brief description of each benchmark.
We limit our analysis to eleven languages across thirteen
implementations: C, C#, C++, Go, Java, JavaScript, Lua (Lua
and LuaJIT), PHP, Python (CPython and PyPy), Rust, and
TypeScript. These languages comprise 11 of the top 12 most
popular general programming languages in the 2024 Stack
Overflow survey [34]] (excluding Kotlin).

We attempt to compile and run all benchmark implemen-
tations with sources present in the repository, and omit those
without source code or which fail with compilation or run-
time errors. After these omissions, the analysis below spans
118 out of 130 possible language implementation / benchmark
pairs. Some benchmarks make use of third-party libraries: we
use the default package manager’s version when available, or
manually upgrade to the latest available version.

We stress that while the CLBG benchmarks are not nec-
essarily representative of real-world applications, the causal
analysis this paper develops is largely independent of the
details of the benchmark implementations. It instead high-
lights the impact of high-level properties of the benchmark
implementations, such as their degree of parallelism and cache
activity.

SPEC CPU 2017: SPEC CPU 2017 [32] is a widely used
benchmark suite for evaluating systems on C, C++ and Fortran
code. The suite consists of large real-world programs and
workloads, ranging between 1k and 1.3M lines of code. We
use the latest available version (1.1.9) and run all benchmarks
in the “speed” category using the reference input set. We omit
a single benchmark, cam4, as it did not successfully run on
our platform. Table [[II| briefly describes each benchmark.

DaCapo: DaCapo [33] is a widely used benchmark suite
for Java applications. The suite consists of large real-world
programs and workloads, ranging between 25k and 6M lines
of code. We use the latest available version (Chopin) and run
all benchmarks using the default input set. Table [[V] provides
a brief description of each benchmark.

VI. EVALUATION

This section addresses the research questions posed in
Section using the causal model and enhanced methodology

TABLE III: SPEC CPU 2017 benchmarks (.

Benchmark | Language(s) Description

perlbench C Perl interpreter

gcc C GNU C compiler

mcf C Route planning

omnetpp C++ Discrete-event simulation
xalancbmk | C++ XML to HTML conversion
x264 C Video compression
deepsjeng C++ Alpha-beta tree search
leela C++ Monte Carlo tree search
exchange?2 Fortran Recursive solution generator
XZ C General data compression
bwaves Fortran Explosion modeling
cactuBSSN | C++, C, Fortran | Physics: relativity

Ibm C Fluid dynamics

wrf Fortran, C Weather forecasting

cam4 Fortran, C Atmosphere modeling
pop2 Fortran, C Wide-scale ocean modeling
imagick C Image manipulation

nab C Molecular dynamics
fotonik3d Fortran Computational electromagnetics
roms Fortran Regional ocean modeling

TABLE IV: DaCapo benchmarks (§V-B).

Benchmark | Description

avrora AVR controller simulation
batik Render SVG files

biojava Protein sequence analysis
cassandra NoSQL database

eclipse IDE workload

fop Render PDF files
graphchi ALS matrix factorization
h2 SQL database

h2o Machine learning

jme Render video game frames
jython Python implementation
kafka Stream processing
luindex Text indexing

lusearch Text search

pmd Static analysis

spring Web framework

sunflow Render photorealistic images
tomcat Web server

tradebeans Stock market simulation
tradesoap Stock market simulation
xalan XML transformation
zXxing Barcode reader

introduced in Sections [[V] and [V]

We conduct experiments in this paper using a server
equipped with two Intel Xeon Gold 6430 processors totaling
128 logical cores and 128GB of memory, running Linux
version 6.8.0-45-generic. Table details specific compiler
and runtime system versions. Benchmark runs are isolated in
Docker containers to ensure reproducibility. Docker introduces
negligible performance overhead [35]], which we confirm for
the experiments detailed in this paper by obtaining equivalent
results without Docker. Docker provides easy access to control
groups, making it possible to place restrictions on CPU usage
or to pin programs to execute on specific cores (Section |VI-B]).

A. RQI: Do Some Language Implementations Consume More
Energy Than Others?

According to our model, the only significant causal path
from programming language to energy consumption is me-



TABLE V: Versions of compilers and runtime systems used
(§VI). All are most recent as of September 2024.

Implementation | Language(s) Version
LLVM / Clang | C, C++ 19
Rust Rust 1.81.0
OpenJDK Java 21.0.4+7
Go Go 1.23.1
C# / NET C# 8.0.8
Node.js JavaScript, TypeScript | 20.17.0
PHP PHP 8.3.11
tsc TypeScript 5.6.2
CPython Python 3.12.6
PyPy Python 7.3.17
Lua Lua 54.7
LualJIT Lua 87ael8a
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(a) CPython versus PyPy
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(b) Lua versus LualIT

Fig. 7: Programming Languages can exhibit different per-
formance characteristics depending on the implementation
used (§IV-B). Here, we compare interpreters (CPython, Lua)
to their JIT equivalent (PyPy, LuaJIT) on the same CLBG
benchmark sources. We normalize to the interpreter results.
We find around 5x and 1.25x decreased execution time and
energy consumption on average for LuaJIT over Lua and PyPy
over CPython, respectively.

diated by three factors: the language’s implementation, the
application’s implementation, and execution time. Therefore,
for identical application implementations, power draw variance
can only be due to language implementation differences.
Similarly, if the number of cores used is fixed, variance in
energy consumption is uniquely determined by execution time.

For the Same Language: It is well known that different
implementations of the same language may have widely vary-
ing performance characteristics. Figure [/| compares languages
across multiple implementations on the same set of bench-

marks, namely CPython/PyPy and Lua/LualJIT, and confirms
that not only do the JIT implementations offer increased
performance, they also provide corresponding energy savings.
On average for these benchmarks, PyPy is about 1.25x faster
than CPython, and LuaJIT is 5x faster than the Lua interpreter.

Note that different implementations of the same language,
as well as different versions of the same implementation, may
have different tooling, compatibility, or support. These dif-
ferences do not affect our experiments. In our PyPy/CPython
and Lua/LualIT evaluation, all benchmarks run successfully
in both the interpreter and JIT implementation, with only one
exception for each: pidigits does not work with PyPy due to a
third-party library compilation failure, and fasta fails in LuaJIT
due to a standard library utility rename.

Across Many Languages and Implementations: To test
if the choice of programming language implementation has
an effect on power draw beyond execution time, we fix other
factors that may affect power draw: we limit the program to a
single core via Docker’s ——cpuset-cpus argument, and pin
CPUs to their minimum frequency with turbo mode disabled
to ensure frequency scaling and throttling do not increase
power draw variance in our measurements. Once these factors
are controlled for, we measure execution time and energy
consumption of each benchmark across all language imple-
mentations. These measurements yield equal power draw:
189.8 + 0.5 W. Hence, the impact of choice of programming
language implementation (or programming language more
generally) on energy consumption beyond execution time is
negligible.

RQ1 Summary: Different language implementations can
have widely varying performance characteristics, and by
extension, energy efficiency. However, once accounting for
external factors such as numbers of cores used, all bench-
marks in all language implementations exhibit constant
power draw. Hence, energy consumption is directly propor-
tional to execution time. Faster language implementations
will offer commensurate energy savings.

B. RQ2: What Are the Key Contributors to Power Draw
Standing Between Choice of Programming Language and
Energy Consumption?

Our causal model identifies number of active cores and
memory activity as primary contributors to power draw. Sec-
tion [V]details our improved measurement methodology, which
allows us to accurately quantify to which extent these factors
actually contribute to power draw.

Number of Active Cores: Figure 82 shows the relationship
between the number of active cores and power draw. Using
multiple cores, energy usage grows up to around 2Xx the base
power draw compared to using a single core. We fit a log
curve to the data (R* = 0.72), as the relationship does not
appear linear, but results may vary across platforms. Denoting
Power (z) as the average power draw using x cores, we
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Fig. 8: Power draw is much more significantly affected by the number of active cores than memory activity (§IV-D).

Each point on those graphs represents a single benchmark run.

find that, on our system, doubling the number of cores used
increases average power draw by only roughly 31W:

Power () = 31log, x + 246
= Power (2z) = 31log, (2z) + 246
= Power (2z) = 311log, 2 + 31log, = + 246
= Power (2z) = Power (z) + 31

Further, on our machine, doubling the number of cores in-
creases relative energy efficiency, provided throughput in-
creases by at least 13%:

Power (2x)  31log, (2x) + 246

<113
Power (z) 3llogyx +246 %

(1<az<128)

In other words, parallelization overhead up to 87% is accept-
able. Therefore, on our experimental platform, aggressively
parallelizing programs is nearly always an energy-efficient
choice.

Memory Activity: Previous research has established that
roughly 40% of dynamic random access memory (DRAM)
energy consumption is constant and required to refresh mem-
ory cells to keep the system running properly, while the
remaining 60% is related to read and write activity [36].
Section [V-A] introduces last level cache (LLC) misses as a
better proxy for memory activity: any read or write request
that cannot be fulfilled by the LLC will have to go to DRAM.
Figure [8b] shows a strong linear correlation between LLC
misses and increased power draw (R2 = 0.93). However, this
figure also highlights how much smaller the memory’s energy
consumption is to the processor’s, with their ratio remaining
from 2 to 8 % across all benchmarks.

RQ2 Summary: Number of active cores is the primary
factor in increased power draw. Memory energy consump-
tion is linearly related to memory usage, but significantly
less important than processor energy consumption. More-
over, aggressive parallelization, even with high overheads,
increases energy efficiency.

\. J

C. RQ3: Can Observed Anomalies in Prior Work Be Ex-
plained Through the Lens of Our Causal Model?

This section identifies four major sources of anomalies in
prior work. For each anomaly, we indicate in brackets which
causal path(s) in our model are responsible.

Concurrency [Application Implementation — {Number of
Active Cores, Time}]: The number of cores used by an
application is a major factor in energy consumption, as Sec-
tion [VI-B] quantifies. Therefore, comparing benchmark imple-
mentations in different languages that use different numbers of
cores is not a fair comparison. Level of parallelism imbalances
are the main reason for the reported performance discrepancies
between JavaScript and TypeScript. The TypeScript version of
the mandelbrot benchmark is 21x slower than its JavaScript
implementation. Its execution is fully sequential, while the
JavaScript version uses 28 cores on average.

Further, since TypeScript is a strict superset of JavaScript
and we test them using the same runtime system, there should
be no differences in execution time or energy consumption.
With some minor edits in four benchmarks, all JavaScript
benchmark implementations pass the TypeScript compiler
without any errors, and yield equal performance.

Third-Party Library Usage [Application Implementation
— {Time, Number of Active Cores}]: Choice of third-party
libraries used has a significant impact on application perfor-



mance. In fact, regular expression benchmarks are often poor
candidates to make any comparison beyond the library used.
This is the case for the CLBG regex-redux benchmark: it is
8.9x slower in its C++ implementation compared to the C
version. This difference is entirely due to choice of third-party
library: the C version uses the PCRE library, while the C++
version uses the Boost library. On this benchmark, Boost’s
library performs significantly worse than PCRE. This outlier
alone accounts for the entire reported gap between C and C++.

Unlike TypeScript and JavaScript, C++ is not a strict
superset of C. Nonetheless, all C benchmarks compile in
C++ mode, only sometimes requiring the —fpermissive
compiler flag or minor changes such as added types or casting.
These programs then yield identical performance and energy
consumption numbers.

Crossing Language Boundaries: Using third-party libraries
also allows for easily crossing language boundaries, for in-
stance to access lower-level system utilities or to obtain
greater performance. In Python, using NumPy can yield up
to 60,000x faster code when multiplying matrices [22, 37].
On a small micro-benchmark multiplying 10,000 x 10,000
matrices, we find that NumPy is 84 x faster than a naive three-
loop C++ implementation, with 44 x lower energy consump-
tion. Of course, this is because NumPy’s underlying matrix-
multiply implementation is written in a low-level language
and leverages many optimizations such as parallelism, vector
instructions, blocking, or hardware-specific instructions. To
some degree, using NumPy and other third-party libraries has
become the “correct” way of writing Python code: leveraging
low-level languages for compute-intensive tasks, while keep-
ing Python’s simplicity. Even C++ may cross over to code
originally written using C, Fortran, or direct Assembly for
performance when using BLAS.

Just-in-Time (JIT) Warmup [Programming Language Im-
plementation — Time]: JIT program execution is typically
split into a startup phase and a delayed steady state phase
of peak performance. As the program executes, the JIT
runtime determines which code paths are frequently exe-
cuted, and compiles them into machine code, eventually
optimizing hotspots. However, existing research has already
shown that a steady state of peak performance is not always
reached [23, 24]]. In fact, one of these studies [24] uses the
same CLBG benchmark suite and demonstrates that for some
benchmarks, a steady state is never reached.

Factors other than JIT warmup may also affect the first
iteration of short-lived benchmarks, such as bytecode inter-
pretation or memory and garbage collection initialization. To
verify this, we wrap Java benchmarks in a loop and gradually
increase the number of in-process iterations. Figure [0] shows
that for the mandelbrot and fannkuch-redux benchmarks, the
first iteration’s execution time is respectively 2.7x and 1.4x
slower than when averaging over 15 iterations. Generally, we
see that for these and other benchmarks, averaging over ten
or more iterations amortizes the first iteration’s impact: across
all CLBG benchmarks, we observe a mean of 80% improved
energy efficiency and execution time.
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Fig. 9: Measuring just the first iteration is not indicative of
Java’s (OpenJDK) performance for long-lived applications
(§IV-E). We gradually increase the number of iterations,
observing decreased per-iteration execution time on several
benchmarks, including (a) mandelbrot and (b) fannkuch-redux.

Garbage Collection [Programming Language Implemen-
tation — {Time, Memory Activity}]: An important prop-
erty of higher-level languages and their implementations is
garbage collection, which imposes significant performance
overhead [25]. Out of the 13 language implementations dis-
cussed in this paper, 10 use a garbage collector. Garbage
collectors can typically be configured and tuned for each
application to offer maximal performance, which is standard
practice in real-world applications to optimize for application
throughput and/or latency. For example, Go’s garbage collector
can be disabled entirely with the GOGC environment variable.
When doing so, we observe a 2.8 speedup on the allocation-
intensive binary-trees benchmark, and a 1.23x speedup on
mandelbrot. Disabling the garbage collector over all Go bench-
marks yields an average of 1.15x improved execution time
and energy consumption.

s Y

RQ3 Summary: Variations in application implementa-
tions, notably parallelism and third-party library usage,
explain observed anomalies between JavaScript/TypeScript
and C/C++. Important language implementation specifics
such as warmup and garbage collection must also ade-
quately be accounted for: when doing so, the unexpectedly
large gap between Go/Java and C significantly shrinks.




VII. THREATS TO VALIDITY

This study largely focuses on reproducing Pereira et al.’s
experiments, which rely on a specific set of benchmarks. We
mitigate this threat to external validity by not only focusing on
general run-time properties of those programs rather than their
absolute execution time, but also by verifying results across
two additional benchmark suites.

Experiments in this paper are conducted on a server archi-
tecture, maintaining comparability with prior work. While we
expect our conclusions to generalize to other architectures, re-
sults may differ on mobile, embedded systems, or architectures
mixing energy-saving and high-performance cores.

VIII. OTHER RELATED WORK

Previous sections, notably Section discuss and critique
the main line of research relating programming languages and
energy consumption [9H11]]. Follow-on studies [38][39] use ex-
ternal energy measurements rather than on-chip measurements,
but still suffer from the same limitations as the original work.

Georgiou et al. [40] explore the Energy Delay Product
(EDP) of programming languages on Rosetta Code. The goal
of EDP is to establish a trade-off between energy consumption
and execution time. Our evaluation suggests that, in fact, op-
timizing for execution time also provides proportional energy
consumption reduction. Georgiou et al.’s public data reveals
that this conclusion is in line with their findings: even in
the “optimize for energy” case, nearly all benchmark versions
which are the fastest are also the most energy-efficient, with
the rare exceptions attributable to short execution times, coarse
measurement granularity, and/or missing multicore accounting.
Our methodology leverages modern on-chip energy and per-
formance counters, offering an analysis and new causal model
based on more granular and precise measurements.

Several other studies [21} 41]] explore and compare perfor-
mance and other properties across programming languages, but
do not address energy efficiency directly. These comparative
studies are complementary to this work: we show here that
execution time is the primary factor in energy consumption.

Processor operating voltage and frequency have an impact
on energy consumption. This impact has been studied in the
context of trading off speed for reduced energy consumption,
where compiling for speed yields better energy efficiency in
the general case [42]]. For specific applications, such as sparse
matrix computations, compile-time techniques may decrease
energy usage without impacting execution time by leverag-
ing load imbalance [43[]. Other work has shown that using
characteristics of a program during execution to reduce the
processor’s voltage or frequency can yield higher energy effi-
ciency for a comparably smaller performance degradation [44].
For example, performance counter information can be used to
scale the processor’s frequency [28]]. These approaches are
orthogonal to the choice of programming language and could
be applied in many programming environments.

Graphics processing units (GPUs) are increasingly prevalent
in modern computing systems, notably in artificial intelligence
workloads. Past work has examined the energy efficiency of

GPUs from a software perspective, notably accounting for the
energy expenditure of tensors [45] and comparing the energy
consumption of different machine learning frameworks [46].
Extending our work to incorporate a model for energy con-
sumption of GPUs is a potential avenue for future work.

Previous research also addresses the energy consumption
of different data structures in certain languages, notably Java
collections [47-49], or Python data manipulation libraries [50].
Data structures can be interesting candidates to study through
an energy-focused lens as they can have a substantial impact
on locality and memory activity, which, as Section
describes, are factors in energy consumption. However, pro-
grammers often have a limited choice of data structures that
fit their use case or algorithm.

Finally, past work has also investigated energy efficiency
of concurrent programs, focusing on Haskell’s data sharing
primitives [S1]] or Java’s thread management constructs [52],
or analyzing the power to performance trade-offs in lock-based
synchronization [53]]. As Section argues, these studies
confirm that the power usage patterns of the processor and the
machine as a whole are more complex with parallel execution.

IX. CONCLUSION

This paper presents a detailed causal model exploring
the complex relationship between choice of programming
language and energy consumption. It captures some of the
factors at play, notably distinguishing implementation from
programming language, and establishing the number of active
cores and memory activity as important factors in power draw.

Using this causal model, we investigate and explain anoma-
lies in previous research, finding that many factors such
as parallelism level, benchmark implementation specifics, or
language implementation properties must be taken into ac-
count for a fair comparison. Our results suggest that the
choice of programming language has no significant impact
on energy consumption beyond execution time. Programmers
aiming to reduce energy consumption can do so by focusing
on performance optimizations. This strategy is possible even
in “inefficient” programming languages like Python by using
faster language implementations, employing faster and more
parallel algorithms, and using native libraries.
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