
Chapter 14
On the Classification of f -Quandles

Indu Rasika Churchill, Mohamed Elhamdadi and Nicolas Van Kempen

Abstract We use the structural aspects of the f -quandle theory to classify, up to
isomorphisms, all f -quandles of order n. The classification is based on an effective
algorithm that generate and check all f -quandles for a given order. We also include
a pseudocode of the algorithm.
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14.1 Introduction

Quandles are algebraic structures whose axioms come from Reidemeister moves in
knot theory. They are used to construct representations of braid groups and thus give
invariants of knots. In 1982, Joyce [11] and Matveev [13] independently introduced
the notion of a quandle. They associated to each knot a quandle that determines the
knot up to isotopy and mirror image. Since then quandles and racks have been inves-
tigated by topologists in order to construct knot and link invariants, see [1, 2, 6, 7]
for more details. Quandles are also of interests to algebraists since these algebraic
structures can be investigated on their own right as non-associative algebraic struc-
tures. Recently, the notion of f -quandle was introduced in [3, 5] where the identities
defining a quandle were twisted by a map. This idea was inspired by the notion of
a Hom-algebra structure [10, 12] which is a multiplication on a vector space where
the structure is twisted by some map. When the twisting map is the identity, one
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recovers the original structure. Hom-algebra structures were introduced in [10] with
the goal of studying the deformations of Witt algebra and the deformation of the
Virasoro algebra. Since then there has been a growing interests in Hom-structures
in different settings (algebras, coalgebras, Hopf algebras, Leibniz algebras, n-ary
algebras). In this article, we use the structural aspects of the f -quandle theory to
classify f -quandles of low orders up to isomorphisms.

The article is organized as follows. In Sect. 14.2, we review the basics of quandles,
f -quandles, some of their properties and give some examples. Section14.3 contains
the main results of the paper that is the classification, up to isomorphism, of f -
quandles with cardinality less than seven.

14.2 Basics of Quandles and f -Quandles

In this section we review the basics of racks, quandles, f -racks and f -quandles
including definitions, examples and some properties. We will use � to denote the
binary operation of a quandle and ∗ to denote the binary operation of an f -quandle
throughout the paper. For more details on quandles we refer the interested reader,
for example, to the book [7] and article [3] for details on f -quandles.

Let (X, �) be a set with a binary operation. For x ∈ X , the right multiplication
by x is the map Rx : X → X given by Rx (u) = u � x,∀u ∈ X . Now we give the
following definition of a shelf, rack and quandle.

Definition 14.1 A shelf is a pair (X, �) in which X is a set, � is a binary operation
on X such that, for any x, y, z ∈ X , the identity

(x � y) � z = (x � z) � (y � z) (14.1)

holds. A rack is a shelf such that, for any x, y ∈ X , there exists a unique z ∈ X such
that

z � y = x . (14.2)

A quandle is a rack such that, for each x ∈ X , the identity

x � x = x (14.3)

holds.

The following are some examples of racks and quandles.

Example 14.1 A rack X is trivial if ∀x ∈ X , Rx is the identity map.

Example 14.2 For any abelian group G, the operation x � y = 2y − x defines a
quandle structure on G called Takasaki quandle. In particular, if G = Zn (integers
modulo n), it is called dihedral quandle and denoted by Rn .



14 On the Classification of f -Quandles 361

Example 14.3 Let X be a module over the ring Λ = Zn[t±1, s]/(s2 − (1 − t)s).
Then X is a rack with operation x � y = t x + sy. If t + s �= 1, then this rack is
not a quandle. But if s = 1 − t , then this rack becomes a quandle called Alexander
quandle (also called affine quandle).

Example 14.4 The conjugation x � y = yxy−1 in a groupG makes it into a quandle,
denoted Conj (G).

Example 14.5 The operation x � y = yx−1y in a group G makes it into a quandle,
denoted Core(G).

Example 14.6 Let G be a group and let ψ be an automorphism of G, then the
operation x � y = ψ(xy−1)y defines a quandle structure on G. Furthermore, if
H is a subgroup of G such that ψ(h) = h, for all h ∈ H , then the operation
Hx � Hy = Hφ(xy−1)y gives a quandle structure on G/H .

For each x ∈ X , the left multiplication by x is the map denoted by Lx : X →
X and given by Lx (y) := x � y. A function f : (X, �) → (Y,�) is a quandle
homomorphism if for all x, y ∈ X, f (x � y) = f (x)� f (y). Given a quandle (X, �),
we will denote by Aut(X) the automorphism group of X . The subgroup of Aut(X),
generated by the automorphisms Rx , is called the inner automorphismgroup of X and
denoted by Inn(X). The subgroup of Aut(X), generated by Rx R−1

y , for all x, y ∈ X ,
is called the transvection group of X denoted by Transv(X). It is well known [11]
that the transvection group is a normal subgroup of the inner group and the latter
group is a normal subgroup of the automorphism group of X . The quotient group
Inn(X)/Transv(X) is a cyclic group. To every quandle, there is a group associated
to it which has a universal property and called enveloping group of the quandle [7].
The following are some properties and definitions of some quandles.

• A quandle X is involutive, or a kei, if, ∀x ∈ X, Rx is an involution.
• A quandle is connected if Inn(X) acts transitively on X .
• A quandle is faithful if x 	→ Rx is an injective mapping from X to Inn(X).
• A Latin quandle is a quandle such that for each x ∈ X , the left multiplication Lx

by x is a bijection. That is, the multiplication table of the quandle is a Latin square.
• Aquandle X ismedial if (x � y)�(z�w) = (x �z)�(y�w) for all x, y, z,w ∈ X . It
is well known that a quandle is medial if and only if its tranvection group is abelian.
For this reason, sometimesmedial quandles are called abelian. For example, every
Alexander quandle is medial.

• A quandle X is called simple if the only surjective quandle homomorphisms on
X have trivial image or are bijective.

Now, we give some background on f -quandles.

Definition 14.2 ([3, Definition 2.1]) An f -shelf is a triple (X, ∗, f ) in which X
is a set, ∗ is a binary operation on X , and f : X → X is a map such that, for any
x, y, z ∈ X , the identity
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(x ∗ y) ∗ f (z) = (x ∗ z) ∗ (y ∗ z) (14.4)

holds. An f -rack is a f -shelf such that, for any x, y ∈ X , there exists a unique z ∈ X
such that

z ∗ y = f (x). (14.5)

An f -quandle is a f -rack such that, for each x ∈ X , the identity

x ∗ x = f (x) (14.6)

holds.

Remark 14.1 Using the right translation Ra : X → X defined as Ra(x) = x ∗a, the
identity (14.4) can be written as R f (z)(x ∗ y) = Rz(x)∗Rz(y) or R f (z)Ry = RRz(y)Rz

for all x, y, z ∈ X .

Now we give the definition of homomorphism between two f -quandles.

Definition 14.3 Let (X1, ∗1, f1) and (X2, ∗2, f2)be two f -racks (resp. f -quandles).
A map φ : X1 → X2 is a f -rack (resp. f -quandle) morphism if it satisfies, ∀a, b ∈
X1 φ(a ∗1 b) = φ(a) ∗2 φ(b) and φ ◦ f1 = f2 ◦ φ.

A quandle endomorphism that is bijective is called an isomorphism of the f -quandle.

Remark 14.2 The category of f -quandle is the category whose objects are tuples
(A, ∗, f ) which are f -quandles and the morphism are f -quandle morphisms.

Examples of f -quandles include the following.

Example 14.7 Given any set X and map f : X → X , then the operation x ∗ y =
f (x) for any x, y ∈ X gives an f -quandle. We call this a trivial f -quandle structure
on X .

Example 14.8 For any groupG and any group endomorphism f ofG, the operation
x ∗ y = f (y)xy−1 defines an f -quandle structure on G.

Example 14.9 Consider the dihedral quandle Rn , where n ≥ 2, and let f be an
automorphism of Rn . Then f is given by f (x) = ax+b, for some invertible element
a ∈ Zn and some b ∈ Zn [8]. The binary operation x∗y = f (2y−x) = 2ay−ax+b
(mod n) gives an f -quandle structure called the f -dihedral quandle.

Example 14.10 Any Z[T±1, S]-module M is a f -quandle with x ∗ y = T x + Sy,
x, y ∈ M with T S = ST and f (x) = (S + T )x , called an Alexander f -quandle.

Remark 14.3 Axioms (14.4) and (14.6) of Definition14.2 give the following equa-
tion, (x ∗ y) ∗ (z ∗ z) = (x ∗ z) ∗ (y ∗ z). We note that the two medial terms in this
equation are swapped (resembling the mediality condition of a quandle). Note also
that the mediality in the general context may not be satisfied for f -quandles. For
example one can check that the f -quandle given in Example14.8 is not medial.
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Proposition 14.1 ([3]) If (X, ∗, f ) is an f -quandle and y ∈ X, then the right
multiplication Ry : X → X given by Ry(x) = x ∗ y is a bijection.

Definition 14.4 A f -crossed set is a f -quandle (X, ∗, f ) such that ∀x, y ∈ X , we
have x ∗ y = f (x) whenever y ∗ x = f (y).

Notice that the extra condition in this definition of f -crossed means that, ∀x, y ∈ X ,
Rx (y) = f (y) is equivalent to Ry(x) = f (x).

The following proposition from [3] gives a key construction providing a new
f -quandle from an f -quandle and an f -quandle morphism.

Proposition 14.2 Let (X, ∗, f ) be a finite f -quandle and φ : X → X be an f -
quandle morphism: (φ(x ∗ y) = φ(x) ∗ φ(y)). Then (X, ∗φ, fφ) is an f -quandle
with a ∗φ b = φ(a ∗ b) and fφ(a) = φ( f (a)) if and only if φ is an automorphism.
Moreover, if φ is an element of the centralizer of the automorphism group of X, then
the associated f -quandle has the same f map.

We will refer to (X, ∗φ, fφ) as a twist of (X, ∗, f ).

Remark 14.4 Notice that a quandle (resp. rack, shelf) may be viewed as an f -
quandle (resp. f -rack, f -shelf) for which the structure map f is the identity map.

Corollary 14.1 In the particular case where f = idx , the proposition shows that
any usual quandle along with an appropriate morphism gives rise to an f -quandle.

Example 14.11 Let G be a non-abelian group and f a group automorphism. Then
one gets an example of a f -quandle by x ∗ y = f (y)−1 f (x) f (y). For example, in
the case of the symmetric group on three letters G = S3 =< s, t : s2 = t3 = e, ts =
st2 > and f be a group automorphism that maps s → st , t → t2. Then one gets an
example of a f -quandle by x ∗ y = f −1(y) f (x) f (y) given by the following table:

∗ e s t t2 st st2

e e e e e t t2

s st st st2 s st st
t t2 t t2 t2 t2 e
t2 t t2 t t e t
st s st2 st st2 st2 st2

st2 st2 s s st s s

For example s ∗ t = st2.

Remark 14.5 Ifwe consider in the previous example the operation defined as x∗y =
y−1x f (y), then we obtain an isomorphic f -quandle.

Example 14.12 Recall from [8] that any automorphism of the dihedral quandle Zn

is of the form fa,b(x) = ax + b. Using the previous proposition we recover the
f -dihedral quandle of Example14.9.
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14.2.1 Enveloping Groups of f -Racks

We define in the following the concept of enveloping groups of f -racks and discuss
some functorial properties.

Definition 14.5 Let (X, ∗, f ) be a f -rack. Then there is a natural map ι mapping
X to a group, called the enveloping group of f -rack of X , and defined as GX =
F(X)/ < x ∗ y = f (y)xy−1, x, y ∈ X >, where F(X) denotes the free group
generated by X .

In the following, we discuss a functoriality property between f -racks and groups,
see [9] for the classical case.

Proposition 14.3 ([3]) Let (X, ∗, f ) be a f -rack and G be a group. Given any f -
rack homomorphism ϕ : X → Gconj , where Gconj is a group together with a f -rack
structure along a group homomorphism g, that is the multiplication is defined as
a ∗G b = g(b)ab−1. Then, there exists a unique group homomorphism ϕ̃ : GX → G
which makes the following diagram commutative.

Remark 14.6 The functor (X, ∗, f ) → GX is left adjoint to the forgetful functor
G → Gconj from the category of groups to that of f -racks. That is,

Homgroups(GX ,G) � Hom f −racks(X,Gconj )

by natural isomorphism.

14.3 Classification of f -Quandles up to Isomorphism

To classify f -quandles up to isomorphism, we have created an algorithm that gener-
ates and checks all f -quandles for a given order n. Since a basic brute-force method
would be too computationally expensive, we added three major optimizations that
allowed us to get results for n < 7, where n is the cardinality of the f -quandle.

14.3.1 Description of the Algorithm

In this subsection, we describe in full details the algorithmwhich allows us to classify
f -quandles of order less than seven. We represent an f -quandle X of order n by an
n×n matrix (ai j ) where the entry ai j := i ∗ j , where ∗ is the binary operation on X .
Generating all possible n×n matrices and then checking which are valid f -quandles
would have a complexity of O(nn

2
). This brute-force method is thus not reasonable

when searching for all f -quandles of any order greater than 3.
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14.3.1.1 Generating All f -Quandles for a Given Order

The algorithm developed for this first part is based on and extends to f -quandles
the one presented in [8]. To generate all valid f -quandles for the given order, we
keep a list of uncompleted (partially defined) f -quandles and procedurally fill them
with variables until the list is empty. This guarantees that all valid f -quandles for
the given order are found. An f -quandle on the uncompleted list is removed either
when it is complete and valid (in which case it gets added to the completed list), or
when we find that it already violates one or more of the f -quandle rules, in which
case we know it will never result in a valid f -quandle.

Algorithm 1 Procedurally generating all valid f -quandles
base ← f-quandle with all values set to undefined
incomplete ← empty list
results ← empty list
add base to incomplete
while incomplete is not empty do

f quandle ← pop first element from incomplete
if f quandle is fully defined then
if f quandle is valid then
if f quandle is not isomorphic to any f -quandle in results then
add f quandle to results

end if
end if

else
for all i ∈ X do
copy ← copy of f quandle
replace next unknown value of copy by i
if copy is valid then
fill values of copy using f -quandle rules
add copy to incomplete

end if
end for

end if
end while

To illustrate the process of filling up undefined values, consider this partially
defined f -quandles, where blanks signal unknown values.

∗ a b c
a c
b a b
c

We can, using the definition of an f -quandle [3, Definition 2.1]), fill in some
undefined values that necessarily have to be equal a defined variable in the given
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configuration. Here, we can use the property of column bijectivity, stating that each
column must contain all elements of X . We also use the rule stating that for all
x, y, z ∈ X , we have (x ∗ y) ∗ f (z) = (x ∗ z) ∗ (y ∗ z).

Since a ∗ a = c and b ∗ a = a, we know that c ∗ a = b. Further, we have:

(b ∗ a) ∗ (c ∗ a) = (b ∗ c) ∗ f (a)

a ∗ b = b ∗ (a ∗ a)

a ∗ b = b ∗ c

a ∗ b = b

∗ a b c
a c b
b a b
c b

Once we cannot logically determine any other unknown variables anymore, we
add n new quandles to the uncompleted list, selecting an unknown value and setting it
successively to each possible value it can have (i.e. all elements of X ). In the situation
above, we would add three new f -quandles to the uncompleted list, respectively
where a ∗ c = a, a ∗ c = b, and a ∗ c = c. We will later consider these, checking if
they are valid and if so filling up values as explained.

This method of procedurally filling f -quandles also allows to quickly eliminate
them if at any moment any of the three f -quandle rules does not apply. For example,
consider the following partially defined f -quandle.

∗ a b c
a c b
b a
c b

Wecanfindhere at least one contradiction and thus throwaway this partial f -quandle.
Since this partial table is already invalid, there exists noway of filling unknownvalues
that would result in a valid f -quandle. In this configuration, we have:

(a ∗ b) ∗ (a ∗ b) = (a ∗ a) ∗ f (b)

b ∗ b = c ∗ a

b ∗ b = b

Or, we already know from the table that b ∗ b = a. Since we have a contradiction,
we throw away this partially defined f -quandle and start working on the next one.

We use one final optimization, applied after finishing to fill up the f -quandle as
much as possible. When we are looking to select an unknown value and replace it
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with all possible elements of X , we only need to consider variables already used in
the f -quandle, and one unused variable. For example, say we want to fill the blank
mark a ∗ b in the following f -quandle table:

∗ a b c
a a –
b
c

Here, we will only add two f -quandles to the uncompleted list, one where a ∗b = a,
and one where a ∗ b = b. We do not need to consider the one where a ∗ b = c,
since all f -quandles generated from this path will be isomorphically equivalent to
the ones generated with a ∗ b = b.

14.3.1.2 Checking for Isomorphisms

While we are generating valid f -quandles for the given order, we compare each of
them to every other to filter out any isomorphically-equivalent f -quandles.

More precisely, every time we find a complete and valid f -quandle, we check if
it is isomorphically equivalent to any f -quandle we have already found. If so, we
discard it since we only need one representative for each isomorphic class. If not,
we generate all isomorphisms for the given f -quandle for faster isomorphism check
later and add the f -quandle to the completed list.
Recall Definition 3.1 in [3].

Definition 14.6 Let (X, ∗, f ) and (X0, ∗0, f0)be f -quandles. If there exists an auto-
morphism φ : X → X and corresponding twisting of (X, ∗, f ), denoted (X, ∗φ, fφ),
that is isomorphic to (X0, ∗0, f0), then (X, ∗, f ) and (X0, ∗0, f0) are said to be
twisted-isomorphically equivalent.

(X, ∗, f )
φ

ψ

(X, ∗φ, fφ)

ψ

(X0, ∗1, f1)
ψ−1φψ

(X0, ∗0, f0)

From this it becomes clear that twisted-isomorphisms do define equivalence
classes on the space of f -quandles.
This allows us to consider the classification of f -quandles in terms of twisted-
isomorphically distinct classes.

We generate all f -quandles isomorphic to a given f -quandle by the Definition
3.1 in [3].
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That is, we consider every possible pair of functions (φ,ψ), where φ is an auto-
morphism and ψ an isomorphism, and save a copy of all f -quandles we obtain by
applying the two functions successively on the original f -quandle.

Example 14.13 We include the following Cayley table of a five element f -quandle
on the set {0, 1, 2, 3, 4}

⎡

⎢

⎢

⎢

⎢

⎣

0 1 2 3 4
4 3 1 0 2
3 2 4 1 0
1 4 0 2 3
2 0 3 4 1

⎤

⎥

⎥

⎥

⎥

⎦

where the map f is a bijection acting on the set {0, 1, 2, 3, 4}. It is given by f =
(1 3 2 4) in a cycle notation.

14.3.2 Results

In this section, we describe the results obtained from the algorithm of doing com-
putations with f -quandles. The algorithm was implemented using Java. We have
successfully found results for orders n < 7. Finding results for bigger orders will
require more optimizations or a different approach of generating the f -quandles.

The following table lists the number of f -quandles of order less than seven
both before and after eliminating isomorphic f -quandles from the results. Note that
Sect. 14.3 of the article [3] contains a list of few f -quandles without the isomorphism
filtering.

Order Without isomorphic filtering With isomorphic filtering
2 4 2
3 24 4
4 288 12
5 2760 23
6 56880 79
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